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Motivation

Video on demand is increasing in popularity

Mobile video will generate nearly four-fifths of mobile data traffic
by 2022.

Coded caching can be employed to reduce the peak hour traffic.



Motivation (continuation)

Video Service providers

YouTube
Netflix streaming service
Amazon Instant Video
TikTok

Service provider has to have large bandwidth

Caches enable the server to reduce the transmission rates

High temporal traffic variability.
During low traffic period caches are filled with portions of content.
During peak traffic period server makes use of the content in cache
to deliver the demands at reduced transmission rate.



Problem Setting

K users

caches size M

server N files

shared link

Server has N files each of size F bits.

K users each having a cache of size MF bits

M. A. Maddah-Ali and U. Niesen, “Fundamental limits of caching,” IEEE Trans. Inf. Theory, vol. 60,

no. 5, pp. 2856–2867, May 2014.



Placement and Delivery Phases (Joint Design)

K users

caches size M

server N files

shared link

Placement Phase:

The network not congested.
The main limitation is the
size of the cache memories.
Demands not revealed

Delivery Phase:

Demands are revealed.
The network is congested.
The main limitation is the
rate.

Finding the optimal caching scheme for a given N,K and M.



Uncoded Caching Vs Coded Caching

No Caching

Rate R = K

Uncoded Caching
M
N

fraction of each file stored in the cache.

Server to send to each user (1 − M
N

) fraction of the demanded file.

Rate RU = K (1− M
N

).

Coded Caching

Apart from the local caching gain, global caching gain is also
achieved.

Rate RC = K

(

1−
M

N

)

︸ ︷︷ ︸

Local Caching Gain

(

1

1 + KM
N

)

︸ ︷︷ ︸

Global caching gain

Global caching gain is proportional to global cache size.



Uncoded Caching Vs Coded Caching

Rate-Memory trade-off for N = K = 30.

M. A. Maddah-Ali and U. Niesen, “Fundamental limits of caching,” IEEE Trans. Inf. Theory, vol. 60,

no. 5, pp. 2856–2867, May 2014.



Example: Maddah-Ali and Niesen Scheme

N = 2 files, K = 2 users, cache size M = 1

A

B

N = 2 f les

cache 1 cache 2



Example: N = 2 files, K = 2 users, cache size M = 1

N = 2 files

cache 1 cache 2

A1, A2

B1, B2



Example: N = 2 files, K = 2 users, cache size M = 1

N = 2 files

cache 1 cache 2

A1, A2

B1, B2

A1, B1 A1, B1



Example: N = 2 files, K = 2 users, cache size M = 1

N = 2 files

cache 1 cache 2

A1, A2

B1, B2

A1, B1 A1, B1

A A

A2 Rate R =
1

2



Example: N = 2 files, K = 2 users, cache size M = 1

N = 2 files

cache 1 cache 2

A1, A2

B1, B2

A1, B1 A1, B1

A

A2, B2

B

Rate R = 1

Change in demand changes the number of transmissions required.



Example: N = 2 files, K = 2 users, cache size M = 1

A1, A2

B1, B2

A A

A1, B1 A2, B2

A1 + A2

N = 2 files

Rate R =
1

2

Cache 1 Cache 2



Example: N = 2 files, K = 2 users, cache size M = 1

A1, A2

B1, B2

A

A1, B1 A2, B2

A2 + B1

N = 2 files

Rate R =
1

2

Cache 1 Cache 2

B



N = 2, K = 2, M = 1 (Coded Multicasting)

A1, A2

B1, B2

A1, B1

N = 2 files

Cache 1 Cache 2

A1, B1

Demands Transmissions
A,A A2

A,B A2,B2

B,A B2,A2

B,B B2

Worst case rate R = 1
Uncoded transmissions

A1, A2

B1, B2

A1, B1

N = 2 files

Cache 1 Cache 2

A2, B2

Demands Transmissions
A,A A2 + A1

A,B A2 + B1

B,A B2 + A1

B,B B1 + B2

Worst case rate R = 1/2
Coded transmissions



Rate-Memory trade-off

As memory increases, demands can be delivered at a smaller rate.
M = 0 : All files have to be delivered when demanded, R = N

M = N : All files can be stored in cache, R = 0.
Scheme 1 (Coded Caching) and Scheme 2 (Uncoded Caching) for
N = K = 2

0

0

2

21

R

M

Scheme 1

Scheme 2

1

2

1



General Setup

N files X1,X2, . . . ,XN .

Demand d = (d1, d2, . . . , dK ).

di is the index of the file demanded by user i .

Cache contentsM = (M1,M2, . . . ,MK )

Mi is indices of the bits stored in the cache of user i .

Rate R is achievable for a demand d and a prefetchingM if there
exists a message of length RF such that every user is able to
decode Xdk

.

R∗(d,M) : Minimum achievable rate for given d andM.

R∗(M) = Ed[R∗(d,M)].

R∗ = minMR∗(M)

R∗peak(M) = minmax
d

R∗(d,M)

R∗peak = minMR∗peak(M)



Symmetric batch prefetching

For r = 1, 2, · · · ,K , each file Xi is partitioned into
(K

r

)

non-overlapping subfiles.

A subfile of file Xi is Xi ,A, where A ⊆ {1, ...,K}, |A| = r .

Each user k ∈ {1, 2, . . . ,K} caches subfiles Xi ,A for all
i = 1, 2, · · · ,N.

Each user caches
(K−1

r−1

)
N subfiles each of size F/

(K
r

)
bits.

The number of bits cached at each user is
(K−1

r−1

)
NF/

(K
r

)
= rN

K
F bits

This correesponds to M = rN
K
.

M. A. Maddah-Ali and U. Niesen, “Fundamental limits of caching,” IEEE Trans. Inf. Theory, vol. 60,

no. 5, pp. 2856–2867, May 2014.



Delivery Scheme

Delivery scheme for distinct demands.

For every subset B of r + 1 users, YB = ⊕
k∈B

Xdk ,B\{k}

The expression for peak rate: R∗peak = K
(
1− M

N

)(
1

1+ KM
N

)

Considering all the demand cases (including the non-distinct
demand case):

The expression for average rate: R∗ = Ed

[

( K
r+1)−(K−Ne (d)

r+1 )
(K

r )

]

Ne(d) is the number of distinct files demanded.

YMA scheme is optimal for symmetric batch prefetching.

Q. Yu, M. A. Maddah-Ali, and A. S. Avestimehr, “The exact rate-memory trade-off for caching with

uncoded prefetching,” in Proc. IEEE Int. Symp. Inf. Theory (ISIT), Aachen, Germany, Jun. 2017.



Example: Symmetric batch prefetching

N = 3 files : X1,X2 and X3.

K = 3 users; cache size M = 1

r = KM
N

= 1

Each file is partitioned into
(K

r

)

= 3 subfiles

X1 : X1,{1},X1,{2},X1,{3}

X2 : X2,{1},X2,{2},X2,{3}

X3 : X3,{1},X3,{2},X3,{3}

User i caches
Mi = {X1,{i},X2,{i},X3,{i}}

X1

X2

X3

X1,{1}, X2,{1}, X3,{1} X1,{3}, X2,{3}, X3,{3}X1,{2}, X2,{2}, X3,{2}



Example: Delivery Scheme

d = (1, 2, 3)

For every subset A of r + 1 users YA = ⊕
k∈A

Xdk ,A\{k}

X1

X2

X3

X1,{1}, X2,{1}, X3,{1} X1,{3}, X2,{3}, X3,{3}X1,{2}, X2,{2}, X3,{2}

X1 X2 X3

A = {1, 2}

X1,{2}⊕X2,{1}

A = {1, 3}

X1,{3}⊕X3,{1}

A = {2, 3}

X2,{3}⊕X3,{2}



Example: Delivery Scheme

d = (1, 2, 2)

Leader set of users (U): set of users demanding distinct files.

Here U = {1, 2}.

For every subset A of r + 1 users such that A ∩ U 6= ∅ transmit
YA = ⊕

k∈A
Xdk ,A\{k}

X1

X2

X3

X2 X2X1

X1,{1}, X2,{1}, X3,{1} X1,{2}, X2,{2}, X3,{2} X1,{3}, X2,{3}, X3,{3}

A = {1, 2} :
X1,{2}⊕X2,{1}

A = {1, 3} :
X1,{3}⊕X2,{1}

A = {2, 3} :
X2,{3}⊕X2,{2}



Example: Delivery Scheme

d = (1, 1, 1)

Leader set of users (U): set of users demanding distinct files.

Here U = {1}.

For every subset A of r + 1 users such that A ∩ U 6= ∅ transmit
YA = ⊕

k∈A
Xdk ,A\{k}

X1

X2

X3

X1 X1X1

X1,{1}, X2,{1}, X3,{1} X1,{2}, X2,{2}, X3,{2} X1,{3}, X2,{3}, X3,{3}

A = {1, 2} :
X1,{2}⊕X1,{1}

A = {1, 3} :
X1,{3}⊕X1,{1}



Index Coding Problem

Sender S having n independent messages x = {x1, x2, . . . , xn}.

m receivers R1,R2, . . . ,Rm.

Each receiver Ri knows a subset of messages Ki ⊂ x

(or equivalently {xj}j∈Xi
).

Each receiver Ri demands a subset of messages Wi ⊆ x

(or equivalently and w.l.o.g. a single message xf (i)).

R2

x = {x1, x2, . . . , xn}

R1 Rm

S

xf(1)

{xj}j∈χ1

xf(2) xf(m)

{xj}j∈χ2

{xj}j∈χm

[1] Z. Bar-Yossef, Z. Birk, T. S. Jayram and T. Kol, “Index coding with side information,” in Proc.

47th Annu. IEEE Symp. Found. Comput. Sci., 2006, pp. 197-206.



A simple example

S

R1

R2 R3

R4

has x2, x3, x4

requests x1

requests x2 requests x3

requests x4

has x1, x3, x4 has x1, x2, x4

has x1, x2, x3

4∑

i=1

xi

Naive approach - transmit four messages one after another.

Index coding - Only one transmission (sum of all the messages).



IC and δ-ECIC: Definitions

An index code over Fq is an encoding function C : F
n
q → F

N
q such

that for each receiver Ri , i ∈ [m], there exists a decoding function

Di : F
N
q × F

|χi |
q → Fq satisfying

for IC : Di(C(x), xχi
) = xf (i) ∀ x ∈ F

n
q

for ECIC : Di(C(x) + ǫi , xXi
) = xf (i) ∀x ∈ F

n
q, ǫi ∈ F

N
q ,wt(ǫi ) ≤ δ.

The parameter N is the length of the index code.

An index code is linear if C is a linear transformation.

For linear index codes C(x) = xL where L is an n × N matrix.

Son Hoang Dau, V. Skachek,and Yeow Meng Chee, ”Error Correction for Index Coding With Side

Information”, IEEE Trans.Inf.Theory, vol. 59, Issue: 3, pp. 1517-1531, 2013.



Graphical Representation of Index Coding problems

Any Index Coding problem can be represented using
side-information (directed) hypergraph [1] with vertex set V=[n]
hyper-edge set EH, where EH = {(f (i),Xi ) : i ∈ [m]}.
Vertex vi represents message xi and each hyper-edge a receiver.

Example: n = 3,m = 4: f (1) = 1, f (2) = 2, f (3) = 3, f (4) = 2,
X1 = {2, 3}, X2 = {1}, X3 = {1, 2}, X4 = {3}, the H is

1 2

3

[1] N. Alon, A. Hassidim, E. Lubetzky, U. Stav, and A. Weinstein, “Broadcasting with side

information”, in Proc. 49th Annu. IEEE symp. Found. Comput. Sci, pp.823-832, 2008.



Graphical Representation of Index Coding problems

For general index coding problems, the side information
hypergraph H cannot be replaced by corresponding directed graph
in Figure (b).

1 2

3

(a)

1 2

3

(b)

(a) Side-information hypergraph (b) Directed graph



Min-rank κq(H) of a hypergraph H

The min-rank of the hypergraph H over the finite field with q

elements Fq is defined in [1] as,

κq(H) , min{rankq({vi + ef (i)}i∈[m]) : vi ∈ F
n
q,vi ⊳ Xi},

vi ⊳ Xi denotes that the support of vi is a subset of Xi .

ei = (0, ..., 0
︸ ︷︷ ︸

i−1

, 1, 0, ..., 0
︸ ︷︷ ︸

n−i

) ∈ F
n
q.

[1] Z. Bar-Yossef, Z. Birk, T.S. Jayaram, and T. Kol, ”Index coding with side information”, in Proc.

47th Annu. IEEE symp. Found. Comput. Sci, pp.197-206, Oct. 2006.



Example: Min-rank Calculation

n = 3 messages, m = 4 receivers.

Demands: f (1) = 1, f (2) = 2, f (3) = 3 and f (4) = 2.

Side-information: X1 = {2, 3}, X2 = {1}, X3 = {1, 2}, and
X4 = {3}.

v1 + ef (1) = [1 x x ], v2 + ef (2) = [x 1 0], v3 + ef (3) = [x x 1] and
v4 + ef (4) = [0 1 x ], where x can be either 0 or 1.

The min-rank, κ2(H) is the minimum rank of the n ×m matrix





1 x x 0
x 1 x 1
x 0 1 x




 .

For this example, the minimum rank is 2, corresponding

realization is






1 0 1 0
0 1 0 1
1 0 1 0




 .

Index coded transmissions: x1 + x3 and x2.



Generalized Independence Number α(H)

Consider the case where there are n messages and m receivers and
receiver Ri demanding the message xf (i) and having side
information {xj}j∈Xi

. For each receiver Ri , the set J (H) is defined
as,

J (H) , ∪i∈[m]{{f (i)} ∪ Yi : Yi ⊆ [n] \ Xi}.

A subset H of [n] is called a generalized independent set in H, if
every non-empty subset of H belongs to J (H).

The size of the largest generalized independent set in H is called
the generalized independence number and is denoted by α(H).



Generalized Independence Number α(H)

A set of vertices H of size K forms a generalized independent set if,

Every vertex in H has at least one hyperedge originating from it.

For every k-subset of H and for all k ∈ {2, 3, ...,K}, there should
be at least one hyperedge originating from one vertex and not
ending at any of the remaining k − 1 vertices.

1 2

3

(a) α(H) = 2 and maximum
independent set is H={1, 2}

1

24

3

(b) α(H) = 3 and maximum
independent set is H={1, 2, 3}



Insufficiency of concatenation

Mere application of an ECC on top of an IC may not be optimal.

S.H.Dau, V. Skachek and Y.M. Chee, “Error Correction for Index Coding with Side Information,“

IEEE Trans. Information Theory, Vol.59, No.3, pp. 1517-1531, March 2013,



Bounds for ECIC

α(H) ≤ κq(H)

The optimal length Nq[H, δ] of linear ECIC is bounded by

Nq[α(H), 2δ + 1]
︸ ︷︷ ︸

α−bound

≤ Nq[H, δ] ≤ Nq[κq(H), 2δ + 1]
︸ ︷︷ ︸

κ−bound

.

The upper bound is met by concatenating an optimal index code
with an optimal error correcting code.

When the bounds are met with equality, concatenation of an
optimal error correcting code with an optimal index code gives an
optimal error correcting index code.

S.H.Dau, V. Skachek and Y.M. Chee, “Error Correction for Index Coding with Side Information,“

IEEE Trans. Information Theory, Vol.59, No.3, pp. 1517-1531, March 2013.



Insufficiency of concatenation (Example)

Let n = m = 5 with Wi = i , i = 1, 2, 3, 4, 5 and

K1 = {2, 5}, K2 = {1, 3}, K3 = {2, 4}, K4 = {3, 5}, K5 = {1, 4}.

α(H) = 2 and κ2(H) = 3

α-bound =8; κ-bound =10 for δ = 2.

An optimal 2-ECIC of length 9 is








1 1 1 1 1 0 0 0 0
0 1 0 1 1 0 1 1 0
1 1 0 0 0 1 1 1 0
0 1 1 0 0 1 0 1 1
1 0 1 0 1 0 0 1 1








S.H.Dau, V. Skachek and Y.M. Chee, “Error Correction for Index Coding with Side Information,“

IEEE Trans. Information Theory, Vol.59, No.3, pp. 1517-1531, March 2013,



Coded Caching problem and Index Coding

For a given demand, delivery phase of caching problem is an index
coding problem.

A1, A2

B1, B2

A1, B1

N = 2 files

Cache 1 Cache 2

A2, B2

Corresponds to an index coding problem with n = 4 messages and
K = m = 2 receivers.



Coded caching problem and index coding

Receiver 1

Demands A2

Side-information A1 and B1.

Receiver 2

Demands B1

Side-information A2 and B2.

Min-rank = 1

A1, A2

B1, B2

A

A1, B1 A2, B2

A2 + B1

N = 2 files

Rate R =
1

2

Cache 1 Cache 2

B

As demand changes the corresponding index coding problem
changes.

Delivery phase of a (N,K ,M) coded caching problem consists of
NK index coding problems.



Symmetric batch prefetching and index coding

I(MSB ,d)

MSB : Symmetric batch prefetching

d : demand vector

α(MSB ,d): Generalized independence number of I(MSB ,d)

κ(MSB ,d): Min-rank of I(MSB ,d)

α(MSB ,d) ≤ κ(MSB ,d)

N. S. Karat, A. Thomas and B. S. Rajan, ”Error Correction in Coded Caching With Symmetric

Batch Prefetching,” in IEEE Transactions on Communications, vol. 67, no. 8, Aug. 2019.



Example : Symmetric batch prefetching for N = K = 3,
M = 1

Subfile division:

X1 : X1,{1},X1,{2},X1,{3}

X2 : X2,{1},X2,{2},X2,{3}

X3 : X3,{1},X3,{2},X3,{3}

The cache contents:

M1 : X1,{1},X2,{1},X3,{1}

M2 : X1,{2},X2,{2},X3,{2}

M3 : X1,{3},X2,{3},X3,{3}

X1

X2

X3

X1,{1}, X2,{1}, X3,{1} X1,{3}, X2,{3}, X3,{3}X1,{2}, X2,{2}, X3,{2}

For d = (1, 2, 3), the
corresponding index coding
problem has n = 6 messages
and m = 3 receivers.



Example: Distinct Demands

The demand
vector is
d = (1, 2, 3).

Generalized
independent set B
for this case:

B = {X1,{2},X1,{3},X2,{3}}.

α(MSB ,d) ≥ 3.

n = 6 and the message set is

x = {X1,{2},X1,{3},X2,{1},X2,{3},X3,{1},X3,{2}}

X1;f2g X3;f2g

X2;f1g

X3;f1gX2;f3g

X1;f3g

Delivery phase transmissions

X1,{2} ⊕ X2,{1} X2,{3} ⊕ X3,{2} X1,{3} ⊕ X3,{1}

κ(MSB ,d) ≤ 3

α(MSB ,d) = κ(MSB ,d) = 3.

N. S. Karat, A. Thomas and B. S. Rajan, ”Error Correction in Coded Caching With Symmetric

Batch Prefetching,” in IEEE Transactions on Communications, vol. 67, no. 8, Aug. 2019.



Example: Non-distinct demand case

The demand
vector is
d = (1, 2, 2).

Generalized
independent set B
for this case:

B = {X1,{2},X1,{3},X2,{3}}.

α(MSB ,d) ≥ 3.

n = 5 and the message set is

x = {X1,{2},X1,{3},X2,{1},X2,{2},X2,{3}}

X1;f2g X2;f2g

X2;f1g
X2;f3g

X1;f3g

Delivery phase transmissions

X1,{2} ⊕ X2,{1} X2,{3} ⊕ X2,{2} X1,{3} ⊕ X2,{1}

κ(MSB ,d) ≤ 3

α(MSB ,d) = κ(MSB ,d) = 3.



Example: Non-distinct demand case

All users demand the same file
X1.

d = (1, 1, 1)

Generalized independent set B

for this case:

B = {X1,{2},X1,{3}}.

α(MSB ,d) ≥ 2.

n = 3 and the message set is

x = {X1,{1},X1,{2},X1,{3}}

X1;f1g X1;f2g X1;f3g

Delivery phase transmissions

X1,{1} ⊕ X1,{2}

X1,{1} ⊕ X1,{3}

κ(MSB ,d) ≤ 2

α(MSB ,d) = κ(MSB ,d) = 2.



List of α and κ values for all the possible demands

Demand α κ Demand α κ Demand α κ

(X1,X2,X3) 3 3 (X1,X3,X3) 3 3 (X2,X2,X3) 3 3

(X1,X3,X2) 3 3 (X3,X1,X3) 3 3 (X2,X3,X2) 3 3

(X2,X1,X3) 3 3 (X3,X3,X1) 3 3 (X3,X2,X2) 3 3

(X2,X3,X1) 3 3 (X1,X1,X2) 3 3 (X2,X3,X3) 3 3

(X3,X1,X2) 3 3 (X1,X2,X1) 3 3 (X3,X2,X3) 3 3

(X3,X2,X1) 3 3 (X2,X1,X1) 3 3 (X3,X3,X2) 3 3

(X1,X2,X2) 3 3 (X1,X1,X3) 3 3 (X1,X1,X1) 2 2

(X2,X1,X2) 3 3 (X1,X3,X1) 3 3 (X2,X2,X2) 2 2

(X2,X2,X1) 3 3 (X3,X1,X1) 3 3 (X3,X3,X3) 2 2

For any demand d,

α(MSB ,d) = κ(MSB ,d).



Number of messages in the corresponding index coding
problem

N files, K users.

d: Demand vector

Ne(d): Number of distinct files demanded

WLOG let the demanded files be X1,X2, . . . ,XNe(d)

fi : The number of users demanding file i , i ∈ {1, 2, . . . ,Ne(d)}.

The corresponding index coding problem has n messages, where

n = Ne(d)

(

K

r

)

−
Ne(d)
∑

i=1

(

K − fi

r − fi

)



Generalization

Construction of a generalized independent set

B(d) =
⋃

i∈[Ne(d)]

{Xdi ,{a1,...,ar} : a1, ..., ar 6= 1, 2, ..., i}.

Ne(d) : Number of distinct files in d.

α(MSB ,d) ≥ |B(d)|.

We have shown that

|B(d)| =

(

K

r + 1

)

−

(

K − Ne(d)

r + 1

)

.

|B(d)| is the number of transmissions in YMA delivery scheme.

κ(MSB ,d) ≤ |B(d)|

YMA scheme is optimal for symmetric batch prefetching.

N. S. Karat, A. Thomas and B. S. Rajan, ”Error Correction in Coded Caching With Symmetric

Batch Prefetching,” in IEEE Transactions on Communications, vol. 67, no. 8, Aug. 2019.



Optimal error correcting delivery scheme forMSB

Delivery phase of a (K ,N,M) caching scheme corresponds to NK

index coding problems.

For every index coding problem I(MSB ,d), we have

α(MSB ,d) = κ(MSB ,d).

α-bound and κ-bound satisfy

Nq[α(H), 2δ + 1] = Nq[H, δ] = Nq[κq(H), 2δ + 1].

Optimal error correcting delivery scheme: Concatenation of YMA
delivery scheme with optimal classical error correcting code.

N. S. Karat, A. Thomas and B. S. Rajan, ”Error Correction in Coded Caching With Symmetric

Batch Prefetching,” in IEEE Transactions on Communications, vol. 67, no. 8, Aug. 2019.



Example: Error correcting delivery scheme

X1

X2

X3

X1,{1}, X2,{1}, X3,{1} X1,{3}, X2,{3}, X3,{3}X1,{2}, X2,{2}, X3,{2}

X1 X2 X3

d = (1, 2, 3).

Corresponding index coding problem
has: n = 6 and m = 3.

Three YMA scheme transmissions:
X1,{2} ⊕ X2,{1}, X2,{3} ⊕ X3,{2}, X1,{3} ⊕ X3,{1}

The corresponding index
coding matrix:

G =








1 0 0
0 0 1
1 0 0
0 1 0
0 0 1
0 1 0








κ(MSB ,d) = 3.

To correct δ = 1 error:
concatenate with an
optimal error correcting
code of dimension 3.



Example: Error correcting delivery scheme

Generator matrix

M =

[
1 0 0 1 1 0
0 1 0 1 0 1
0 0 1 0 1 1

]

.

X1

X2

X3

X1,{1}, X2,{1}, X3,{1} X1,{3}, X2,{3}, X3,{3}X1,{2}, X2,{2}, X3,{2}

X1 X2 X3

N2[κ(MSB ,d), 3] = 6

Error correcting delivery matrix:

GM =








1 0 0 1 1 0
0 0 1 0 1 1
1 0 0 1 1 0
0 1 0 1 0 1
0 0 1 0 1 1
0 1 0 1 0 1







.

Delivery scheme
Y1 : X1,{2} ⊕ X2,{1}

Y2 : X2,{3} ⊕ X3,{2}

Y3 : X1,{3} ⊕ X3,{1}

Y4 : X1,{2} ⊕ X2,{1} ⊕ X2,{3} ⊕ X3,{2}

Y5 : X1,{2} ⊕ X2,{1} ⊕ X1,{3} ⊕ X3,{1}

Y6 : X2,{3} ⊕ X3,{2} ⊕ X1,{3} ⊕ X3,{1}



Uncoded and Coded Prefetching

Coded caching with uncoded prefetching

Parts of files are placed as such without coding.

Coded caching with coded prefetching

Parts of files are coded and placed.

Performs better than the uncoded prefetching case.

The fundamental scheme by Maddah-Ali and Niesen: Centralized
scheme with uncoded prefetching.

Z. Chen, P. Fan, and K. B. Letaief, “Fundamental limits of caching: improved bounds for users with

small buffers,” IET Communications, vol. 10, no. 17, pp. 2315-2318, Nov. 2016.

J. Gómez-Vilardebó, “Fundamental Limits of Caching: Improved Rate-Memory Tradeoff With

Coded Prefetching,” in IEEE Transactions on Communications, vol. 66, no. 10, Oct. 2018.



Coded and Uncoded Prefetching: N = K = 2

The solid blue curve indicates Maddah-Ali and Niesen Scheme-
uncoded prefetching.

The dotted black curve indicates the improvement using
coded prefetching.

The dashed red curve indicates the cut-set based lower bound.



Coded prefetching

Example N = K = 3 and M = 1/3.

Each file is split into three subfiles and XORed messages are
cached.

X1

X2

X3

X1,1 ⊕X2,1 ⊕X3,1
X1,3 ⊕X2,3 ⊕X3,3X1,2 ⊕X2,2 ⊕X3,2

Z. Chen, P. Fan, and K. B. Letaief, “Fundamental limits of caching: improved bounds for users with

small buffers,” IET Communications, vol. 10, no. 17, pp. 2315-2318, Nov. 2016.



CFL Scheme

X1

X2

X3

X1,1 ⊕X2,1 ⊕X3,1
X1,3 ⊕X2,3 ⊕X3,3X1,2 ⊕X2,2 ⊕X3,2

X1 X2 X3

d = (1, 2, 3).

CFL transmissions:
X2,1,X3,1,X1,2,X3,2,X1,3,X2,3.

Rate, RCFL = 6/3 = 2.

Rate achieved when YMA
scheme is used: RYMA = 2.33.

Coded prefetching performs better than uncoded prefetching.



CFL scheme : K users, N files and M = 1/K

Prefetching scheme depends on the relation between N and K .

For N = K

Each file split into N subfiles: Xi = (Xi ,1,Xi ,2, . . . ,Xi ,N).
Cache of user i : Ci = X1,i ⊕ X2,i ⊕ . . .XN,i .

For K > N

Each file split into NK subfiles: Xi = (Xi ,1,Xi ,2, . . . ,Xi ,NK ).
Cache of user i : Ci = X1,N(i−1)+j ⊕ . . .⊕ XN,N(i−1)+j, for
j = 1, 2, . . . ,N .

Rate achieved in CFL scheme

R =

{

Ne(d) if Ne(d) ≤ N − 1

N − N
K

if Ne(d) = N
.

Z. Chen, P. Fan, and K. B. Letaief, “Fundamental limits of caching: improved bounds for users with

small buffers,” IET Communications, vol. 10, no. 17, pp. 2315-2318, Nov. 2016.



CFL Scheme and Generalized Index Coding Problem

For CFL prefetching scheme, coded packets are placed in cache of
each user.

For fixed demand, the delivery phase is a generalized index coding
problem I(MCFL,d).

Sender S having N independent messages X = {x1, x2, . . . , xN}.

i th Receiver demands some linear combination DiX

i th Receiver knows si independent linear combinations
V (i)X , where V (i) ∈ F

si×N
q .

The row space of V (i) is X (i)

D, m × N matrix with ith row as Di , represents demand of all m

users.

K.W. Shum, D. Mingjun, and C.W. Sung, “Broadcasting with coded side information,” in IEEE 23rd

International Symposium on Personal, Indoor and Mobile Radio Communications (PIMRC), Sep. 2012.



Min-rank and GIN of Generalized Index Coding
Problem

The min-rank of the instance I of the GICP over Fq is defined as

κ(I) = min{rank(A + D) : A ∈ F
m×N
q ,Ai ∈ X

(i), i ∈ [m]}.

Z(i) is defined as

Z(i) , {Z ∈ F
N×1
q : V (i)Z = 0,DiZ 6= 0}.

Z = ∪i∈[m]Z
(i) ∪ {0}.

Generalized independence number α(I) is the maximum
dimension of any subspace of F

N
q in Z.

Eimear Byrne and Marco Calderini, ”Error correction for index coding with coded side

information,” IEEE Trans. Inf. Theory, vol. 63, no. 6, pp. 3712-3728, Jun. 2017.



Example: α(I(MCFL, d))

N = K = 3 and M = 1/3.

X1

X2

X3

X1,1 ⊕X2,1 ⊕X3,1
X1,3 ⊕X2,3 ⊕X3,3X1,2 ⊕X2,2 ⊕X3,2

X1 X2 X3

d = (1, 2, 3).

Set of equations

e1 : X1,1 ⊕ X2,1 ⊕ X3,1 = 0
e2 : X1,2 ⊕ X2,2 ⊕ X3,2 = 0
e3 : X1,3 ⊕ X2,3 ⊕ X3,3 = 0

S : set of all vectors which
satisfy these equations.

S is a subspace of F
9
q



Example Contd...

dim(S) ≥ 6

I(MCFL,d) has 9 messages and 9 receivers.

Z(di ,j) , {Z ∈ F
9
q : ei ,Xdi ,j 6= 0}.

All vectors in S, with Xdi ,j 6= 0 belongs to Z(di ,j).

All vectors in S lie in Z = ∪i ,j∈[3]Z
(di ,j) ∪ {0}.

α(MCFL,d) ≥ dim(S) ≥ 6.

From CFL delivery scheme : κ(MCFL,d) ≤ 6.

κ(MCFL,d) = α(MCFL,d) = 6.



Example: Non-distinct demands

Let d = (1, 1, 1),Ne (d) = 1

In addition to e1, e2 and e3 consider

e4 : X2,1 = 0

e5 : X2,2 = 0

e6 : X2,3 = 0

Let S be the solution subspace.

dim(S) ≥ 9− 6 = 3.

All vectors in S are present in Z.

CFL delivery scheme: κ(MCFL,d) ≤ 3

α(MCFL,d) = κ(MCFL,d) = 3.



Generalization for N = K and N < K

Theorem

For N = K and M = 1/N,

α(MCFL,d) = κ(MCFL,d) =

{

N(Ne(d)) if Ne(d) ≤ N − 1

N(N − 1) if Ne(d) = N
,

where Ne(d) is the number of distinct demands.

Theorem

For N < K and M = 1/K ,

α(MCFL,d) = κ(MCFL,d) =

{

NK (Ne(d)) if Ne(d) ≤ N − 1

N2(K − 1) if Ne(d) = N ,

where Ne(d) is the number of distinct demands.

N. S. Karat, A. Thomas and B. S. Rajan, ”Optimal Error Correcting Delivery Scheme for an

Optimal Coded Caching Scheme with Small Buffers,” IEEE ISIT 2018, Vail.



Example: K > N ,M = 1/K (N=3, K =4, M=1/4).

Each file is split into NK = 12 subfiles.

X1

X2

X3

X1,1 ⊕X2,1 ⊕X3,1

X1,3 ⊕X2,3 ⊕X3,3

X1,2 ⊕X2,2 ⊕X3,2

X1,4 ⊕X2,4 ⊕X3,4

X1,5 ⊕X2,5 ⊕X3,5

X1,6 ⊕X2,6 ⊕X3,6

X1,7 ⊕X2,7 ⊕X3,7

X1,8 ⊕X2,8 ⊕X3,8

X1,9 ⊕X2,9 ⊕X3,9

X1,11 ⊕X2,11 ⊕X3,11

X1,12 ⊕X2,12 ⊕X3,12

X1,10 ⊕X2,10 ⊕X3,10



Example

Let d = (1, 2, 3, 1).

Ne(d) = N = 3
X1

X2

X3

X1,1 ⊕X2,1 ⊕X3,1

X1,3 ⊕X2,3 ⊕X3,3

X1,2 ⊕X2,2 ⊕X3,2

X1,4 ⊕X2,4 ⊕X3,4

X1,5 ⊕X2,5 ⊕X3,5

X1,6 ⊕X2,6 ⊕X3,6

X1,7 ⊕X2,7 ⊕X3,7

X1,8 ⊕X2,8 ⊕X3,8

X1,9 ⊕X2,9 ⊕X3,9

X1,11 ⊕X2,11 ⊕X3,11

X1,12 ⊕X2,12 ⊕X3,12

X1,10 ⊕X2,10 ⊕X3,10

X1
X2 X3

X1

ei,j : (X1,3(i−1)+j ⊕X2,3(i−1+j) ⊕X3,3(i−1)+j) = 0 for i = 1, 2, 3 and j = 1, 2, 3.



Example

Consider the nine equations

ei ,j : (X1,3(i−1)+j ⊕ X2,3(i−1+j) ⊕ X3,3(i−1)+j) = 0

for i = 1, 2, 3 and j = 1, 2, 3.

S be the set of vectors satisfying these equations.

dim(S) ≥ 36− 9 = 27.

Z(i ,j) , {Z ∈ F
36
q : ei ,1, ei ,2, ei ,3,Xdi ,j 6= 0} for i ∈ [4]

Z = ∪i∈[4],j∈[12]Z
(i ,j) ∪ {0}

Every vector in S belongs to Z.

Hence α(MCFL,d) ≥ dim(S) ≥ 27.

CFL delivery scheme: κ(MCFL,d) ≤ 27.

α(MCFL) = κ(MCFL) = 27.



Example: Optimal error correcting delivery scheme

N = K = 3, M = 1/3.

Let Ne(d) = 3 and d = (1, 2, 3).

α(MCFL,d) = κ(MCFL,d) = 6.

CFL transmissions: Y1 : X2,1, Y2 : X3,1, Y3 : X1,2, Y4 : X3,2,
Y5 : X1,3 and Y6 : X2,3. The corresponding index coding matrix G

is given by

G =



















0 0 0 0 0 0
0 0 1 0 0 0
0 0 0 0 1 0
1 0 0 0 0 0
0 0 0 0 0 0
0 0 0 0 0 1
0 1 0 0 0 0
0 0 0 1 0 0
0 0 0 0 0 0





















Example

δ = 1.
Generator matrix corresponding to [10, 6, 3]2 code is

M =








1 0 0 0 0 0 1 1 0 0
0 1 0 0 0 0 1 0 1 0
0 0 1 0 0 0 1 0 0 1
0 0 0 1 0 0 0 1 1 0
0 0 0 0 1 0 0 1 0 1
0 0 0 0 0 1 0 0 1 1







.

Concatenation gives rise to 10 transmissions.

Y1 : X2,1

Y2 : X3,1

Y3 : X1,2

Y4 : X3,2

Y5 : X1,3

Y6 : X2,3

Y7 : X2,1⊕X3,1⊕X1,2

Y8 : X2,1⊕X3,2⊕X1,3

Y9 : X3,1⊕X3,2⊕X2,3

Y10 : X1,2⊕X1,3⊕X2,3

Error correcting delivery matrix:

GM =













0 0 0 0 0 0 0 0 0 0
0 0 1 0 0 0 1 0 0 1
0 0 0 0 1 0 0 1 0 1
1 0 0 0 0 0 1 1 0 0
0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 1 0 0 1 1
0 1 0 0 0 0 1 0 1 0
0 0 0 1 0 0 0 1 1 0
0 0 0 0 0 0 0 0 0 0













.



Shared Cache Scheme (SCS)

N files, K users and Λ helper nodes.

. . . . . . . . .

. . .

. . .

N files

Λ caches

. . .

K users

Each user has access to a helper cache.

Helper cache accessed by multiple users.
Shared Cache Scheme involves three steps:

SCS Placement: Uncoded placement of files in helper cache nodes.
User-to-cache association: Each user assigned to exactly one helper
node. Each cache is assigned to a set of users Uλ for λ = 1, 2, . . . ,Λ.
SCS Delivery: Once the demands are revealed, server transmits.

E. Parrinello, A. Unsal, P. Elia, “ Fundamental Limits of Caching in Heterogeneous Networks with

Uncoded Prefetching,” Available on arXiv:1811.06247 [cs.IT], Nov. 2018.



Error Correction for Shared Cache Scheme

We proved that α(MSC) = κ(MSC) =
∑Λ−Λγ

i=1 Li

(Λ−i
Λγ

)
.

Hence the optimal error correcting delivery is by concatenation.

N. S. Karat, S. Dey, A. Thomas and B. S. Rajan, “An Optimal Linear Error Correcting Delivery

Scheme for Coded Caching with Shared Caches,” 2019 IEEE International Symposium on Information

Theory (ISIT), Paris, France, 2019.



Centralized and Decentralized Coded Caching

Centralized coded caching [1]
Prefetching is carried out with a central coordination.

Number of users (K ) is a parameter during placement.

Decentralized coded caching [2]
No central coordination during placement.

Number of users (K ) is not considered as a parameter during
placement.

Rate expression [2]:

R∗peak =K

(

1−
M

N

){

N

KM

(

1−

(

1−
M

N

)K
)}

.

[1] M. A. Maddah-Ali and U. Niesen, “Fundamental limits of caching,” IEEE Trans. Inf. Theory,

vol. 60, no. 5, pp. 2856–2867, May 2014.

[2] M. A. Maddah-Ali and U. Niesen, “Decentralized coded caching attains order-optimal

memory-rate tradeoff,” IEEE/ACM Trans. Networking, vol. 23, no. 4, pp. 1029-1040, Aug. 2015.



Ali-Niesen Decentralized Coded Caching

In centralized coded caching scheme, there may be considerable
time gap between placement and delivery phase because of which
number of users may vary.

So, the number of users may not be known in the placement phase.

No centralized coordination is assumed during placement.

Placement phase : Each user independently caches a subset of MF
N

bits of each file, chosen uniformly at random.

M. A. Maddah-Ali and U. Niesen, “Decentralized coded caching attains order-optimal

memory-rate tradeoff,” in IEEE/ACM Transactions on Networking, vol. 23, no. 4, pp.

1029–1040, Aug. 2015.



Error correcting delivery for Ali-Niesen decentralized
scheme

From the Ali-Niesen decentralized transmissions,

κ(MD ,d) ≤ (1−M/N).
N

M
(1− (1−M/N)Ne (d))F

Theorem

For the index coding problem I(MD ,d),

α(MD ,d) ≥ (1−M/N).
N

M
(1 − (1−M/N)Ne (d))F .

So, α(MD ,d) = κ(MD ,d). Thus concatenation is optimal.

N. S. Karat and B. S. Rajan, “On the Optimality of Ali-Niesen Decentralized Coded Caching

Scheme With and Without Error Correction,” available on arXiv:1903.02408v1 [cs.IT], 5 Mar 2019.



LRS Online Coded Caching (Least Recently Sent)

There are multiple time slots.

A set of popular files for every time slot, denoted by Nt .

Nt evolves from Nt−1 with at most one change.

In each time slot, there is delivery phase and a cache update phase.

Two phases:
Delivery phase : Same as Ali-Niesen Decentralized scheme.
Cache update phase:

N = |Nt |, cardinality of the set of popular files.

Q = βN files are partially cached for some β ≥ 1

If all the demanded files are partially cached: No cache update.

If one demanded file is not partially cached: Cache is updated by

replacing the new file with the least recently sent file.

R. Pedarsani, M. A. Maddah-Ali, and U. Niesen, “Online coded caching,” IEEE/ACM Trans. Netw.,

vol. 24, no. 2, pp. 836–845, Apr. 2016.



LRS Online coded caching (Cache update phase)

There are two cases of situations that can arise during the cache
update phase.

Case I: All the requested files are partially cached. Same as
Ali-Niesen Decentralized scheme. The prefetching scheme here is
denoted asMLRS1. Rate,
R(MLRS1, 0) = (1−M/Q)(Q/M)

(
1− (1−M/Q)K

)
.

Case II: One of the requested files is not partially cached. (K − 1)
users demand files which are partially cached, and one user
demands a file which is not cached. K − 1 users use Ali-Niesen
decentralized scheme and the demanded file of one user is
transmitted as such uncoded. Rate,
R(MLRS2, 0) = (1−M/Q)(Q/M)

(
1− (1−M/Q)K−1

)
+ 1.

For both the cases of LRS scheme, we proved
α(MLRS1,d) = R(MLRS1, 0)F and α(MLRS2,d) = R(MLRS2, 0)F

Since for all cases, α(MLRS ,d) = κ(MLRS ,d), the
concatenation scheme is optimal.
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