Joint Channel Estimation and Soft-Symbol Detection in
Massive MIMO Systems with Low Resolution ADCs

Chandra R. Murthy
February 22, 2020

Department of ECE, Indian Institute of Science, Bangalore, India
Joint work with Sai Subramanyam Thoota



Motivation & Approach

Variational Bayesian Inference

Joint Channel Estimation and Soft Symbol Decoding
Soft Symbol Decoding for MIMO-OFDM Systems

Iterative Channel Estimation and Soft Symbol Decoding for Massive MIMO
OFDM Systems

Simulation Results

Summary



Motivation & Approach



e Massive MIMO: a key technology for 5G
e Large number of RF chains and ADCs

e Power consumption of ADCs increases exponentially with bit-width



e Massive MIMO: a key technology for 5G
e Large number of RF chains and ADCs

e Power consumption of ADCs increases exponentially with bit-width
e Solution: use low resolution ADCs

e Pro: energy efficient; lower silicon footprint
e Cons: non-linearity due to quantization; large training overhead



Massive MIMO: a key technology for 5G
e Large number of RF chains and ADCs
e Power consumption of ADCs increases exponentially with bit-width

Solution: use low resolution ADCs

e Pro: energy efficient; lower silicon footprint
e Cons: non-linearity due to quantization; large training overhead

Challenges:
e Both pilots and data coarsely quantized

e Perfect CSIR is an impractical assumption
e Need joint channel estimation and symbol decoding

e Soft-symbol decoding for coded communication
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Approach

e We present a statistical interference approach to the channel estimation
and soft symbol decoding problem
e Why statistical inference approach?

e A great fit for coded communication systems
e Computing marginal posterior distributions of the transmitted bits provide
an elegant way to obtain the log likelihood ratios

e \Why not exact inference?
o Computational intractability
e High dimensional integrals to compute the partition function
e Massive MIMO receiver: directed probabilistic graphical model
e Approximate inference of posterior distributions of data and channel

e Tool: Variational Bayes inference
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Overview of Probabilistic Graphical Models

Consider a graph G = (V, &)

V and € denote vertices (nodes) and edges, respectively

e Random variables or random vectors modeled as nodes in a graph

e Probabilistic dependence betn. random variables modeled as edges

Examples: Bayesian networks, Markov random fields, factor graphs



Overview of Probabilistic Graphical Models

Consider a graph G = (V, &)

V and € denote vertices (nodes) and edges, respectively

e Random variables or random vectors modeled as nodes in a graph

e Probabilistic dependence betn. random variables modeled as edges

Examples: Bayesian networks, Markov random fields, factor graphs

e Bayesian network:

e Joint distribution:
p(x1)p(x2) p(x3)p(xa|x1, x2, x3) p(xs|x1, X3) (6| xa ) P(x7 | X4, X5)



Approximate Inference

e Main task in statistical inference: compute the posterior distribution
p(X|Z) of the latent variables X given the observed data Z

P(Z|X)p(X)

(X|Z) fx/ z|X/ p(X/)dX/

e Computing the partition function (denominator) is the bottleneck



Approximate Inference

Main task in statistical inference: compute the posterior distribution
p(X|Z) of the latent variables X given the observed data Z

P(Z|X)p(X)
o P(ZIX")p(X")dX'

p(X|Z) =

Computing the partition function (denominator) is the bottleneck
What is the way out?

e Approximate the posterior

e Stochastic
e Markov chain Monte Carlo sampling (e.g. Metropolis Hastings algorithm)
e Deterministic

e Variational Bayes
e Expectation maximization
e Expectation propagation, etc.



Variational Bayesian (VB) Inference

Iterative procedure to infer marginal distributions of latent variables

Observations Z = {z;,...,zn}; latent variables X = {xq,...,xn}
e Goal: Find posterior distribution p(X|Z) and model evidence p(Z)
Model Evidence:

Inp(Z) = L(q) + KL(q || p)

where

c@ = [ aoxn { P& ax

p(X|Z)

KL(qllp) = —/q(X) In {W} dX >0

e Here, g(X) is arbitrary, and can be approximated and optimized



Seek g(X) to max. the evidence lower bound (ELBO) £(q)

Factorized posterior structure imposed on q

a(X) = H ai(Xi)

After simplifying, the ELBO becomes
L(q) = —KL(q;[15(Z, X;)) + const.

where In 5(Z,X;) £ Ei; [In p(Z, X)] + const. *
To maximize £(q), minimize KL divergence
e Minimum when g;(X;) = B(Z, X;)
Optimal g; is given by const X exp (E;; [In p(Z, X)])

e Fix gi4 and obtain the parameters of g; and iterate for all j

"Eig [In p(Z, X)] = [ In p(Z, X) [T,y @i (Xi)dX;



Flow Diagram

[I nput: Observations Zj

| Initialize (X;) Vi |
|
’ For each j compute g(X;), (X;) }(—

Yes
[Output q(X;), (X Vj]
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Joint Channel Estimation and Soft Symbol Decoding

Goal

e Joint channel estimation and soft symbol decoding in the uplink of a
massive MIMO system with low resolution ADCs

Contributions
e Posterior distributions of data symbols and channel inferred using a

variational Bayesian inference framework

e Main algorithm developed: Quantized variational Bayes' joint channel
estimator and soft symbol decoder

e lterative algorithm which refines the channel and data estimates in each
iteration

10



System Model

Channel
Estimation
and Data
Detection

User 1 ; RF Chain }
D Joint

Channel matrix H constant
over the pilot and data duration
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Received Signal

Y, = Q(Zp) = Q(HXP +Wp)7
Yo =Q(Zy4) = Q(HXy +Wy),

e O(-) denotes quantization operation

Bayesian Network Model
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e Conditional probability distributions:
1
p(ZP|xP7H;Uw) X exp T
1 Td
p (Zd|Xd, H; UW) o exp <2 Z lzd,e —
=l
o 419) o (-3 1 ).

p(YalZa) = 1(Z4 € [27,Z07)),
P(YolZp) =1(Z, € 257, Zgﬁ)])

Tp
ZHZPf Hx, ¢ | >

7).
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Quantized Variational Bayesian Joint Channel Estimation and Soft Symbol

Decoding

Goal
e Infer the marginal posterior distribution of the channel and data symbols
Solution Approach
e Fully factorized approximation of the posterior distribution:
P (25,26, X4, HIYp, Yu, X1 B, %)

~ q(Zp)q(Zd4) q(Xa) q(H),

where
Nrx K K 74
q(H) = HHq(hnk) q(Xq) = HHQ(Xd,kt)v
n=1 k=1 (=l =il
Nrx 74 Nrx Tp

z) = [T a(am) . aZ) = [[T]a ().

n=1 t=1 n=1 t=1
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e Computation of g

K):

(hn
In g (ha) o <|np( 51X, H; aw) +Inp (zd|xd, H; aw) + Inp(H|,8)>
i{(Dw +Z<|xdkt|> %) I

o%
— 2R ( [ant kat_katEka’t<hnk>*]

o
+ 3 [(Zd,nt>* (xd,kt) — (X kt) i (Xd,kre)” (MO"DM)}
=il K'=1
k' #£k

e Complex normal distribution



e Computation of g(xqg,kt):
In g (Xd,kt) <In p (Zd\H, Xy: ai,) +1In p(Xd)> ,

1
oc == ({ Il xe el

+ 2% i (i) (i) (e = (2ae)" (i) ) e )-

k'=1
k' #k

® Xy takes values from a M-QAM constellation
exp ( - cr%f(s))
Zs/ exp ( = G%f(sl)) )

q(xdke = s) =

where

(s) = (lInell” ) Isf? + 2% zK: (i)™ (i) (xare)” = (2ae)™ (i) ) ]

e Boltzmann distribution
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e Computation of q(z4,:) and g(z,,:):

1
(lo) _(h )])_?l‘zd’t_

Inq(zg,) o <In 1(2za,t € [247:24 ¢

e Truncated complex normal distribution with mean

(lo) (hi)
¢ Zd,t_"’ld,t _ ¢ Zd,r_"‘ld,t
Uw/ﬁ o'w/ﬁ

)

<zd7t> Mzd,t (hi)
Zae Hzg, | Zyr Py,
& (w/ﬁ) & < ow/V2

>fw
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Flow Diagram of Joint Channel Estimator and Soft Symbol Decoder

[Input: Yp7Yd1Xp7ﬂ7USV]

’ Initialize (zq.¢) , (2p,t) » Xd,kt, VK, t‘

’ Compute (hnk) Vn, k ‘(—

’ Compute Gxy ., (Xd,kt) » {|Xdie|*) VK, t‘

l

’ Compute (zp¢) , (za,r) VE ‘

Yes
[OUtPUt qxd,kt\v/k7 t, <hn/<> vn, k]
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Soft Symbol Decoding for MIMO-OFDM Systems

Goal
e Soft symbol decoding in the uplink of a massive MIMO OFDM system
with low resolution ADCs
e Assumptions:
e Frequency selective fading
e Perfect (or estimated) CSIR available
Contributions
e Posterior distributions of data symbols inferred using a variational

Bayesian inference framework
e Main algorithm: Quantized variational Bayes’” MIMO-OFDM soft symbol

decoder

19



Received signal at the n" antenna during the n" symbol interval

K L-1

2o (0] =D > " ho k%[ — 1+ wo [n],  n=0,...,Nc—1,

k=1 1=0
where
o h,, «[/] is the I™™ tap of channel betn. the k* UE and nf" RX antenna

e L is the length of the frequency selective channel

Xk[m] is the data txed by the k™ UE in the m™ symbol duration

N, is the number of subcarriers

is the complex AWGN, distributed as CA/(0, o2)

e W,

r
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e After CP removal and vectorization, the received signal is as follows:

Z,, = [20,[0], 2o, [1], - . ., zo [N — 1]]7

K
S HO s

>
|
-

Hffr)’kFﬂcxk + whp,

I
M=

>
I
=

where H(n?k € CNexMNe js 3 circulant matrix with the first column as
[, k[0, iy k1], - - o k[ — 11,08, 1]

e Using the properties of circulant matrices, we get

K
Zn, = Z cmHn,ﬁka + Wp,

k=1
= (1]{— ® FZC)H,,,X + an

where H,, = diag(H», 1, Hn, 2,...,Hs, k) is a diagonal matrix.
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Quantized received signal

Y=0 ([z{,...,zﬁ,]T) € CNelext

(1; ® cm)Hl
(1% ® F§)H>
. . X+ w
(1% ® Fy_)Hy,
= Q(Hx + w)

where

o H e CNNexKNe s the composite channel
o x € CKNexl

o w e CVNex1 is the complex AWGN

is the data signal

Solution:

e Same as the flat fading case; can reuse previous solution

e For this part, assume H is known at the receiver

22



Iterative Channel Estimation and Soft
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OFDM Systems




Pilot and Data Transmission Model

Pilots Data 1 - Data Ty

——

N¢ N¢ Ne

Unquantized Rx signal at the nf" Rx antenna during the pilot and data phases

K
Z&) = 5" XPhy, i + w) € Chex?

k=1
K e

ZO[) =S X [t + wiP[e] € TV,
k=1

where

o hy = [hy, k[0], ..., o k[L—1]]" € C**! is the k™ UE's channel
o hy, s =[h; 4,05 _,]" € C'

° i&p) € CNexNe: circulant matrix with the first column as if(p)

o x\? and x\”[t] € CN*1: IDFT of the k™ UE’s pilot and " data symbol
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Rewriting in matrix form and quantizing, we get the unquantized rx signal as
2?0 =z2P,..., 2] = (1% ® Fi )X® (I ® Fn.,0) H + W
2914 = [Z11], ..., Z1e]] = (1K @ FROXD[e] (Ik © Fa ) H+ W], vt

where
e H=1hy,... hy] € CKM is a row sparse matrix
e X(P — diag(Xg"), o X%’)) € (CKNex KN

X[t] = diag(X{V[t], ..., XP[t]) € CHNexKNe
Fu,. € CV*L is the column truncated DFT matrix.

Quantized received signal in one coherence interval
Y = YOIy O], YO [
=Q(z"7, 2], 2 [r))")

(1% ® FN)X® (I ® F,.1)

(1% @ FR )X D[] (Ik ® Fy,.1)
. . H+W

(1% @ FR)XD[rg] (Ix @ Fu1)
— O(DH + W)
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Iterative Channel Estimation and Soft Symbol Decoding

Goal

e To estimate the channel H and decode the data X()[t], t =1,..., 74
given the quantized received and pilot signals

Solution

Iterative channel estimation and soft symbol decoding

Initial quantized VB sparse channel estimation® using pilot observations

Quantized VB soft symbol decoding (with estimated CSIR)

Posterior mean of the decoded data symbols used to refine the channel
estimates in subsequent iterations

2y, Ding, S. E. Chiu, B. D. Rao, “Sparse recovery with quantized multiple measurement vectors”,
Asilomar Conference on Signals, Systems and Computers, 2017.
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Variational Bayes Channel Estimation

System Model
Y = 0(Z) = Q(DH + W)

e H=1[hi,...,hy]
e Each entry of W distributed i.i.d. as CA/(0, o?)

VB Channel Estimation

e Fully factorized approximation of the posterior distribution

p(Z,H,v|Y;D, 027 a,b) = qz(Z)qu(H)q~ (7).

e Prior on H
p(h|y) =CN(0,TY) T =diag(y), I =1,... N,

e Common -y across all / enforces row sparsity
e Sparsity promoting hyperprior on ~

ba
p(vn) = @'yﬁ’l exp{—byn}, >0, n=1,..., KL

e Approximate posteriors obtained using VB procedure

26



Approximate posterior distributions

e Z is truncated complex Gaussian distributed with mean

RSP 1. YT P AN 0 L C) B VA SRS T

V2 ©(3) — b(a)’
where o and § depend on the quantizer limits and (h;)qa,)
e h; is complex Gaussian distributed with mean (h,) (h) and covariance
matrix X

1 .y -
2= (20" +Nw)
1
(h)at) = 5 ED"(@)gwy,  1=1,... N
e v is Gamma distributed with mean

B a+ N,
b+ Z;\I:r1<|hnl|2>q(h/)

(Yn)a(vn) n=1,... KL

o (|hy? Ya(hy) is the nth element in diag((h/>q(h,)(h/>2’(h,) +X)

27



Flow Diagram of VB Channel Estimator

[ Input: Y,D,0,a, bj

’ Initialize (Z), ) , (M o) ‘

|

Compute (h/) ) » (ha) a1

|

’ Compute (Z)4(z) ‘

|

’ Compute (7)q(~) ‘
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Flow Diagram of Iterative Channel Estimator and Soft Symbol Decoder

[lnput: Y® Y], .. Y D[r,], x“ﬂ

Sparse channel estimation:
Estimate H

VB soft symbol decoding:
Obtain g(X@[1]), ..., q(X[rd])

. No

Yes

[Output g(X 1)), ..., g(XD[rd]), H}
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Simulation Results




Joint Channel Estimation and Soft Symbol Decoding?

e N, =200,K = 50,7, = 50,74 = 450
1OO£

—_
o
)
T
-
/7
*®
L

FQMMSE

% UQMMSE
QvB 1

ouQVB & % \ E

<| QMMSE-CSIR K o5 ¥

#QVB-CSIR 5|

52 UQMMSE-CSIR

108 #AUQVB-CSIR ‘
23 -22 -20

Coded BER

—_
o
IN

g

H
-1

8 -16 -14
SNR (dB)

e 3-bits quantization sufficient (= unquantized system)

e Perfect CSI assumption grossly overestimates the performance

33GPP TS 38.212 v15.7.0 (2019-09), Tables 5.3.2-1, 5.3.2-2, 5.3.2-3, LDPC Code Rate = 1/3
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NMSE Performance:

o

S :

w 838@

n

= 88383

-15 [+-QMMSE g&%&% |
%UQMMSE 96
QB 2009,

-20 leuQvB : : ‘ og]
2524 22 20 -18 -16 -14 -12 10 -8 6

SNR (dB)

e Around 8 dB improvement at an NMSE of —10 dB compared to the

MMSE estimation based on unquantized observations
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e N, =100, K =25, SNR=—-13.5 dB, 7, = 25 and 3 bits quantization
e Effect of 74 on the coded BER performance

e As 74 increases, performance improves

10°
RIS Sttt S -------- %= - - 1
@ q S,
8 \\ > Sel
'8 al \\ ~$‘~\\
o110 Q. Sl
\~\~\ \~\$ ~~~~~
“.
\5
) © ]
1078 ‘ ‘



Soft Symbol decoding for MIMO-OFDM: Coded System Performance

Simulation Setup: 16 users, 64 antennas, 128 subcarriers, 3—Dbits

‘IOOE

BER

SNR (dB)

e VB marginally outperforms conventional receiver under perfect CSIR
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Iterative MIMO OFDM channel estimation and soft symbol decoding

Simulation Setup

e Number of subcarriers = 64

e Number of receive antennas = 32

e Number of users = 8

e Channel length = 8

e Sparsity level = 3

e QPSK modulation

e Number of iterations of the receiver = {1,4}
e Coherence interval = {5,9} OFDM symbols

e 3 bit quantization
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—_
o
o

QMMSE-Iter-1
MMSE-Iter-1

= QMMSE-lter-4
AeMMSE-lter-4
©QVB-Iter-1

VB-lter-1
§QVB-Iter-4
’ng VB-Iter-4
3 'QVB-PerfCSIR
-VB-PerfCSIR

A" \

e
o
N

N
o
IS

Coded BER
S

.y

P

_.
o
I8
T
Il

0 2 4 6 8 10 12
SNR (dB)

e Performance improves with the number of iterations of the receiver

e Large improvement of QVB over QMMSE



Summary




e Proposed variational Bayesian inference algorithms for joint channel
estimation and soft symbol decoding in uplink massive MIMO single
carrier and OFDM systems with low resolution ADCs

e The algorithms output the posterior beliefs of the data symbols and
channel estimates

e lterative but computationally simple

e Guaranteed convergence to a local optimum
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