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Motivation & Approach



Motivation

• Massive MIMO: a key technology for 5G

• Large number of RF chains and ADCs

• Power consumption of ADCs increases exponentially with bit-width

• Solution: use low resolution ADCs

• Pro: energy efficient; lower silicon footprint

• Cons: non-linearity due to quantization; large training overhead

• Challenges:
• Both pilots and data coarsely quantized

• Perfect CSIR is an impractical assumption

• Need joint channel estimation and symbol decoding

• Soft-symbol decoding for coded communication
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Approach

• We present a statistical interference approach to the channel estimation

and soft symbol decoding problem

• Why statistical inference approach?

• A great fit for coded communication systems

• Computing marginal posterior distributions of the transmitted bits provide

an elegant way to obtain the log likelihood ratios

• Why not exact inference?

• Computational intractability

• High dimensional integrals to compute the partition function

• Massive MIMO receiver: directed probabilistic graphical model

• Approximate inference of posterior distributions of data and channel

• Tool: Variational Bayes inference
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Variational Bayesian Inference



Overview of Probabilistic Graphical Models

• Consider a graph G = (V, E)

• V and E denote vertices (nodes) and edges, respectively

• Random variables or random vectors modeled as nodes in a graph

• Probabilistic dependence betn. random variables modeled as edges

• Examples: Bayesian networks, Markov random fields, factor graphs

• Bayesian network:

• Joint distribution:
p(x1)p(x2)p(x3)p(x4|x1, x2, x3)p(x5|x1, x3)p(x6|x4)p(x7|x4, x5)
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Approximate Inference

• Main task in statistical inference: compute the posterior distribution

p(X|Z) of the latent variables X given the observed data Z

p(X|Z) =
p(Z|X)p(X)∫

X′ p(Z|X′)p(X′)dX′

• Computing the partition function (denominator) is the bottleneck

• What is the way out?

• Approximate the posterior

• Stochastic

• Markov chain Monte Carlo sampling (e.g. Metropolis Hastings algorithm)

• Deterministic

• Variational Bayes

• Expectation maximization

• Expectation propagation, etc.
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Variational Bayesian (VB) Inference

• Iterative procedure to infer marginal distributions of latent variables

• Observations Z = {z1, . . . , zN}; latent variables X = {x1, . . . , xN}

• Goal: Find posterior distribution p(X|Z) and model evidence p(Z)

• Model Evidence:

ln p(Z) = L(q) + KL(q ‖ p)

where

L(q) ,
∫

q(X) ln

{
p(Z,X)

q(X)

}
dX

KL(q‖p) = −
∫

q(X) ln

{
p(X|Z)

q(X)

}
dX ≥ 0

• Here, q(X) is arbitrary, and can be approximated and optimized
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• Seek q(X) to max. the evidence lower bound (ELBO) L(q)

• Factorized posterior structure imposed on q

q(X) =
N∏
i=1

qi (Xi )

• After simplifying, the ELBO becomes

L(q) = −KL (qj‖p̃(Z,Xj)) + const.

where ln p̃(Z,Xj) , Ei 6=j [ln p(Z,X)] + const. 1

• To maximize L(q), minimize KL divergence

• Minimum when qj (Xj ) = p̃(Z,Xj )

• Optimal qj is given by const× exp (Ei 6=j [ln p(Z,X)])

• Fix qi 6=j and obtain the parameters of qj and iterate for all j

1Ei 6=j [ln p(Z, X)] =
∫

ln p(Z, X)
∏

i 6=j qi (Xi )dXi
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Flow Diagram

Input: Observations Z

Initialize 〈Xi 〉 ∀i

For each j compute q(Xj), 〈Xj〉

Converged?

Output q(Xj), 〈Xj〉 ∀j

No

Yes
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Joint Channel Estimation and Soft

Symbol Decoding



Joint Channel Estimation and Soft Symbol Decoding

Goal

• Joint channel estimation and soft symbol decoding in the uplink of a

massive MIMO system with low resolution ADCs

Contributions

• Posterior distributions of data symbols and channel inferred using a

variational Bayesian inference framework

• Main algorithm developed: Quantized variational Bayes’ joint channel

estimator and soft symbol decoder

• Iterative algorithm which refines the channel and data estimates in each

iteration
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System Model
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Received Signal

Yp = Q (Zp) = Q (HXp + Wp) ,

Yd = Q (Zd) = Q (HXd + Wd) ,

• Q(·) denotes quantization operation

Bayesian Network Model

Xd

ZdHZp

Xp

Yp Yd

σ2
w

β

12



• Conditional probability distributions:

p
(

Zp|Xp,H;σ2
w

)
∝ exp

(
− 1

σ2
w

τp∑
t=1

‖zp,t −Hxp,t‖2

)
,

p
(

Zd |Xd ,H;σ2
w

)
∝ exp

(
− 1

σ2
w

τd∑
t=1

‖zd,t −Hxd,t‖2

)
,

p (H|β) ∝ exp

(
−

K∑
k=1

1

βk
‖hk‖2

)
,

p (Yd |Zd) = 1
(
Zd ∈ [Z(lo)

d ,Z(hi)
d ]
)
,

p (Yp|Zp) = 1
(
Zp ∈ [Z(lo)

p ,Z(hi)
p ]
)
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Quantized Variational Bayesian Joint Channel Estimation and Soft Symbol

Decoding

Goal

• Infer the marginal posterior distribution of the channel and data symbols

Solution Approach

• Fully factorized approximation of the posterior distribution:

p
(

Zp,Zd ,Xd ,H|Yp,Yd ,Xp;β, σ2
w

)
≈ q (Zp) q (Zd) q (Xd) q (H) ,

where

q (H) =

NRX∏
n=1

K∏
k=1

q (hnk) , q (Xd) =
K∏

k=1

τd∏
t=1

q (xd,kt) ,

q (Zd) =

NRX∏
n=1

τd∏
t=1

q (zd,nt) , q (Zp) =

NRX∏
n=1

τp∏
t=1

q (zp,nt) .
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• Computation of q(hnk):

ln q (hnk) ∝
〈

ln p
(

Zp|Xp,H;σ2
w

)
+ ln p

(
Zd |Xd ,H;σ2

w

)
+ ln p (H|β)

〉
,

∝ − 1

σ2
w

{( τp∑
t=1

|xp,kt |2 +

τd∑
t=1

〈
|xd,kt |2

〉
+
σ2
w

βk

)
|hnk |2

− 2<
(( τp∑

t=1

[
〈zp,nt〉∗ xp,kt − xp,kt

K∑
k′=1
k′ 6=k

x∗p,k′t 〈hnk′〉∗
]

+

τd∑
t=1

[
〈zd,nt〉∗ 〈xd,kt〉 − 〈xd,kt〉

K∑
k′=1
k′ 6=k

〈xd,k′t〉∗ 〈hnk′〉∗
])

hnk
)}

• Complex normal distribution
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• Computation of q(xd,kt):

ln q (xd,kt) ∝
〈

ln p
(

Zd |H,Xd ;σ2
w

)
+ ln p (Xd)

〉
,

∝ − 1

σ2
w

(〈
‖hk‖2 〉 |xd,kt |2

+ 2<
[( K∑

k′=1
k′ 6=k

〈
hk′
〉H〈

hk

〉〈
xd,k′t

〉∗ − 〈zd,t〉H〈hk

〉)
xd,kt

])
.

• xd,kt takes values from a M-QAM constellation

q(xd,kt = s) =
exp

(
− 1

σ2
w
f (s)

)
∑

s′ exp
(
− 1

σ2
w
f (s ′)

) ,
where

f (s) =
〈
‖hk‖2 〉 |s|2 + 2<

[( K∑
k′=1
k′ 6=k

〈
hk′
〉H〈

hk

〉〈
xd,k′t

〉∗ − 〈zd,t〉H〈hk

〉)
s
]
.

• Boltzmann distribution
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• Computation of q(zd,t) and q(zp,t):

ln q (zd,t) ∝
〈

ln1
(
zd,t ∈ [z(lo)

d,t , z
(hi)
d,t ]
)
− 1

σ2
w
‖zd,t −Hxd,t‖2

〉
• Truncated complex normal distribution with mean

〈zd,t〉 = µzd,t
+

φ

(
z

(lo)
d,t
−µzd,t

σw/
√

2

)
− φ

(
z

(hi)
d,t
−µzd,t

σw/
√

2

)

Φ

(
z

(hi)
d,t
−µzd,t

σw/
√

2

)
− Φ

(
z

(lo)
d,t
−µzd,t

σw/
√

2

) σw√
2
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Flow Diagram of Joint Channel Estimator and Soft Symbol Decoder

Input: Yp,Yd ,Xp,β, σ
2
w

Initialize 〈zd,t〉 , 〈zp,t〉 , xd,kt ,∀k, t

Compute 〈hnk〉 ∀n, k

Compute qxd,kt , 〈xd,kt〉 ,
〈
|xd,kt |2

〉
∀k, t

Compute 〈zp,t〉 , 〈zd,t〉 ∀t

Converged?

Output qxd,kt∀k, t, 〈hnk〉 ∀n, k

No

Yes
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Soft Symbol Decoding for

MIMO-OFDM Systems



Soft Symbol Decoding for MIMO-OFDM Systems

Goal

• Soft symbol decoding in the uplink of a massive MIMO OFDM system

with low resolution ADCs

• Assumptions:

• Frequency selective fading

• Perfect (or estimated) CSIR available

Contributions

• Posterior distributions of data symbols inferred using a variational

Bayesian inference framework

• Main algorithm: Quantized variational Bayes’ MIMO-OFDM soft symbol

decoder

19



Received signal at the nth
r antenna during the nth symbol interval

znr [n] =
K∑

k=1

L−1∑
l=0

hnr ,k [l ]xk [n − l ] + wnr [n], n = 0, . . . ,Nc − 1,

where

• hnr ,k [l ] is the l th tap of channel betn. the k th UE and nth
r RX antenna

• L is the length of the frequency selective channel

• xk [m] is the data txed by the k th UE in the mth symbol duration

• Nc is the number of subcarriers

• wnr is the complex AWGN, distributed as CN (0, σ2
w )

20



• After CP removal and vectorization, the received signal is as follows:

Znr = [znr [0], znr [1], . . . , znr [Nc − 1]]T

=
K∑

k=1

H(t)
nr ,k

xk + wnr

=
K∑

k=1

H(t)
nr ,k

FH
Nc

xk + wnr

where H(t)
nr ,k
∈ CNc×Nc is a circulant matrix with the first column as

[hnr ,k [0], hnr ,k [1], . . . , hnr ,k [L− 1], 0T
Nc−L]T

• Using the properties of circulant matrices, we get

Znr =
K∑

k=1

FH
Nc

Hnr ,kxk + wnr

= (1T
K ⊗ FH

Nc
)Hnr x + wnr ,

where Hnr = diag(Hnr ,1,Hnr ,2, . . . ,Hnr ,K ) is a diagonal matrix.
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Quantized received signal

Y = Q
([

ZT
1 , . . . ,Z

T
Nr

]T)
∈ CNrNc×1

= Q




(1T
K ⊗ FH

Nc
)H1

(1T
K ⊗ FH

Nc
)H2

...
. . .

...

(1T
K ⊗ FH

Nc
)HNr

 x + w


= Q (Hx + w)

where

• H ∈ CNrNc×KNc is the composite channel

• x ∈ CKNc×1 is the data signal

• w ∈ CNrNc×1 is the complex AWGN

Solution:

• Same as the flat fading case; can reuse previous solution

• For this part, assume H is known at the receiver
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Iterative Channel Estimation and Soft

Symbol Decoding for Massive MIMO

OFDM Systems



Pilot and Data Transmission Model

Unquantized Rx signal at the nth
r Rx antenna during the pilot and data phases

Z(p)
nr =

K∑
k=1

X
(p)
k hnr ,k + w(p)

nr ∈ CNc×1

Z(d)
nr [t] =

K∑
k=1

X
(d)
k [t]hnr ,k + w(d)

nr [t] ∈ CNc×1,

where

• hnr ,k = [hnr ,k [0], . . . , hnr ,k [L− 1]]T ∈ CL×1 is the k th UE’s channel

• hnr ,k = [hT
nr ,k , 0

T
Nc−L]T ∈ CNc×1

• X
(p)
k ∈ CNc×Nc : circulant matrix with the first column as x(p)

k

• x(p)
k and x(d)

k [t] ∈ CNc×1: IDFT of the k th UE’s pilot and tth data symbol
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Rewriting in matrix form and quantizing, we get the unquantized rx signal as

Z(p) = [Z(p)
1 , . . . ,Z(p)

Nr
] = (1T

K ⊗ FH
Nc

)X(p) (IK ⊗ FNc ,L) H + W(p)

Z(d)[t] = [Z(d)
1 [t], . . . ,Z(d)

Nr
[t]] = (1T

K ⊗ FH
Nc

)X(d)[t] (IK ⊗ FNc ,L) H + W(d)[t], ∀t

where

• H = [h1, . . . , hNr ] ∈ CKL×Nr is a row sparse matrix

• X(p) = diag(X(p)
1 , . . . ,X(p)

K ) ∈ CKNc×KNc

• X(d)[t] = diag(X(d)
1 [t], . . . ,X(d)

K [t]) ∈ CKNc×KNc

• FNc ,L ∈ CNc×L is the column truncated DFT matrix.

Quantized received signal in one coherence interval

Y = [Y(p)T ,Y(d)T [1], . . . ,Y(d)T [τd ]]T

= Q([Z(p)T ,Z(d)T [1], . . . ,Z(d)T [τd ]]T )

= Q




(1T
K ⊗ FH

Nc
)X(p) (IK ⊗ FNc ,L)

(1T
K ⊗ FH

Nc
)X(d)[1] (IK ⊗ FNc ,L)
...

. . .
...

(1T
K ⊗ FH

Nc
)X(d)[τd ] (IK ⊗ FNc ,L)

H + W


= Q(DH + W)
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Iterative Channel Estimation and Soft Symbol Decoding

Goal

• To estimate the channel H and decode the data X(d)[t], t = 1, . . . , τd

given the quantized received and pilot signals

Solution

• Iterative channel estimation and soft symbol decoding

• Initial quantized VB sparse channel estimation2 using pilot observations

• Quantized VB soft symbol decoding (with estimated CSIR)

• Posterior mean of the decoded data symbols used to refine the channel

estimates in subsequent iterations

2Y. Ding, S. E. Chiu, B. D. Rao, “Sparse recovery with quantized multiple measurement vectors”,

Asilomar Conference on Signals, Systems and Computers, 2017.
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Variational Bayes Channel Estimation

System Model

Y = Q(Z) = Q(DH + W)

• H = [h1, . . . , hNr ]

• Each entry of W distributed i.i.d. as CN (0, σ2)

VB Channel Estimation

• Fully factorized approximation of the posterior distribution

p(Z,H,γ |Y; D, σ2, a, b) ≈ qZ(Z)qH(H)qγ(γ),

• Prior on H

p(hl |γ) = CN (0, Γ−1) Γ = diag(γ), l = 1, . . .Nr

• Common γ across all l enforces row sparsity

• Sparsity promoting hyperprior on γ

p(γn) =
ba

Γ(a)
γa−1
n exp{−bγn}, γn > 0, n = 1, . . . ,KL.

• Approximate posteriors obtained using VB procedure
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Approximate posterior distributions

• Z is truncated complex Gaussian distributed with mean

〈zml〉q(zl ) = [D〈hl〉q(hl )]m+
σ√
2
· φ(α)− φ(δ)

Φ(δ)− Φ(α)
, m = 1, . . . ,Nc , l = 1, . . . ,Nr

where α and δ depend on the quantizer limits and 〈hl〉q(hl )

• hl is complex Gaussian distributed with mean 〈hl〉q(hl ) and covariance

matrix Σ

Σ =

(
1

σ2
DHD + 〈Γ〉q(γ)

)−1

,

〈hl〉q(hl ) =
1

σ2
ΣDH〈zl〉q(zl ), l = 1, . . . ,Nr .

• γ is Gamma distributed with mean

〈γn〉q(γn) =
a + Nr

b +
∑Nr

l=1〈|hnl |2〉q(hl )

n = 1, . . . ,KL.

• 〈|hnl |2〉q(hl )
is the nth element in diag(〈hl 〉q(hl )

〈hl 〉Hq(hl )
+ Σ)

27



Flow Diagram of VB Channel Estimator

Input: Y,D, σ, a, b

Initialize 〈Z〉q(Z) , 〈Γ〉q(γ)

Compute 〈hl〉q(hl )
, 〈h2

nl〉q(hl )∀n, l

Compute 〈Z〉q(Z)

Compute 〈γ〉q(γ)

Converged?

Output 〈H〉q(H), 〈γ〉q(γ)

No

Yes
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Flow Diagram of Iterative Channel Estimator and Soft Symbol Decoder

Input: Y(p),Y(d)[1], . . . ,Y(d)[τd ],X(p)

Sparse channel estimation:

Estimate H

VB soft symbol decoding:

Obtain q(X(d)[1]), . . . , q(X(d)[τd ])

Max Iterations reached?

Output q(X(d)[1]), . . . , q(X(d)[τd ]),H

No

Yes
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Simulation Results



Joint Channel Estimation and Soft Symbol Decoding3

• Nr = 200,K = 50, τp = 50, τd = 450
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• 3-bits quantization sufficient (≈ unquantized system)

• Perfect CSI assumption grossly overestimates the performance

33GPP TS 38.212 v15.7.0 (2019-09), Tables 5.3.2-1, 5.3.2-2, 5.3.2-3, LDPC Code Rate = 1/3
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NMSE Performance:
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SNR (dB)

-20

-15

-10

-5

0
N

M
S

E
 (

d
B

)

QMMSE

UQMMSE

QVB

UQVB

• Around 8 dB improvement at an NMSE of −10 dB compared to the

MMSE estimation based on unquantized observations
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• Nr = 100, K = 25, SNR=−13.5 dB, τp = 25 and 3 bits quantization

• Effect of τd on the coded BER performance

• As τd increases, performance improves
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Soft Symbol decoding for MIMO-OFDM: Coded System Performance

Simulation Setup: 16 users, 64 antennas, 128 subcarriers, 3−bits
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• VB marginally outperforms conventional receiver under perfect CSIR
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Iterative MIMO OFDM channel estimation and soft symbol decoding

Simulation Setup

• Number of subcarriers = 64

• Number of receive antennas = 32

• Number of users = 8

• Channel length = 8

• Sparsity level = 3

• QPSK modulation

• Number of iterations of the receiver = {1, 4}

• Coherence interval = {5, 9} OFDM symbols

• 3 bit quantization
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• Performance improves with the number of iterations of the receiver

• Large improvement of QVB over QMMSE
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Summary

• Proposed variational Bayesian inference algorithms for joint channel

estimation and soft symbol decoding in uplink massive MIMO single

carrier and OFDM systems with low resolution ADCs

• The algorithms output the posterior beliefs of the data symbols and

channel estimates

• Iterative but computationally simple

• Guaranteed convergence to a local optimum
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