Integrated Transceiver Architectures for 5G Cellular Base Stations

Jaiganesh Balakrishnan & Sriram Murali

Texas Instruments, Bangalore Feb 21, 2020

Outline

- Cellular Base Station Trends
 - Driving Factors
- Cellular Base Stations Overview
 - 5G Signal Structure
- Cellular Base Station Integrated Transceivers
 - Overview
 - Key Parameters
 - Transceiver non-idealities
- Integrated Transceiver Architectures
 - IF Sampling Architecture
 - Zero IF Architecture
 - RF Sampling Architecture

Is this a Cellular Base Station?

3

Cellular Base Station – Trends

Cellular Base Stations – Driving Factors (1)

How to increase Channel Capacity?
↑ Standards Evolution: 4G ⇒ 5G
↑ Bandwidth: 20 to 60 MHz ⇒ 200 to 800 MHz
↑ No. of Bands: Single ⇒ Dual
↑ No. of Antennas: 2 / 4 ⇒ 32 / 64

Capacity = BW*log₂(1+SNR)

5G base stations achieve 5X – 8X higher channel capacity by using massive MIMO (64T64R)

Cellular Base Stations – Driving Factors (2)

How to achieve lower cost/bit?
↑ Channel capacity
↓ Cost per channel (or antenna)
↓ Form Factor
↓ Power per channel

A base station is not battery operated. Hence, does its power consumption matter?

Need innovations in transceiver design to reduce cost & power consumption, while supporting wider bandwidth and maintaining the high performance

5G Cellular Base Stations – Overview

Cellular Base Station – Spectrum Usage

• What happens when there is asymmetry between volume of uplink (UL) & downlink (DL) data?

5G – Frequency Band Allocation

- Initial 5G deployment is focused on sub-6 GHz frequency bands
 - 3.3 GHz to 3.8 GHz are the more popular frequency bands, although 2.5 to 2.7 GHz & 4.4 to 5 GHz bands have also been allocated in some countries
 - Spectrum auction has been completed in many countries (China, South Korea, Japan, Germany, United Kingdom, Italy, Switzerland, etc.)
- mmWave (28 GHz) currently limited to fixed wireless access (e.g., Verizon, USA)

Service Provider	Spectrum (GHz)	Service Provider	Spectrum (GHz)
China Mobile	2.52 - 2.68 & 4.8 - 4.9	South Korea Telecom	3.6 – 3.8
China Telecom & Unicom	3.4 - 3.5 & 3.5 - 3.6	Korea Telecom	3.5 - 3.6 & 3.8 - 3.9
India (5G auction pending)	3.3 – 3.6	Europe	3.42 - 3.8
NTT Docomo, Japan	3.6 - 3.7 & 4.5 - 4.6	KDDI, Japan	3.7 - 3.8 & 4.0 - 4.1

Integrated transceivers need to cater to a wide variety of frequency bands & signal BW

For the same transmit power, is cell coverage area similar for sub-6 GHz & mmWave bands?

Cellular Base Station – 5G Signal Structure

- Orthogonal Frequency Domain Multiplexing (OFDM) with Cyclic Prefix (CP) is used.
 - Signal band is partitioned in to sub-carriers in the frequency domain.
 - For instance, sub-carrier spacing can be 15 KHz / 30 KHz / ... / 240 KHz.
 - A slot, typically has 14 OFDM symbols (slot duration of 1 ms / 500 μs / ... / 62.5 μs).
 - A slot can be all DL, UL or mixed (combination of DL / UL)
- Users are allocated different physical resource blocks (RB)
 - Each RB is a group of contiguous 12 sub-carriers

Massive MIMO – Introduction

- 5G uses massive # of base station antennas (e.g., 64 for sub-6 GHz; 256 for mmWave)
- Fully digital beamforming is employed in sub-6 GHz 5G bands
 - 3D beamforming improves SINR (Signal to Interference-&-noise ratio) of each user
 - Multi-user MIMO enables same time/freq. resource to be allocated to spatially separated users
 - Spatial multiplexing enables increase in data throughput
- Hybrid (mostly-analog) beamforming is employed in mmWave 5G bands

Is independent beam steering of RBs (different frequency bins) possible with analog beamforming?

Cellular Base Station – Integrated Transceiver

Cellular Base Station – Signal Chain Architecture (1)

Amit

Cellular Base Station – FDD Example

Metal Cavity Duplexer in an FDD base station (Huawei, 1.8 GHz band) with 2 antennas

Source: Kaizer Power Electronics

Base Station – Integrated Transceiver Architecture

- Receiver
 - Desired Signal is down-converted from the pass-band using RF mixers
 - Down-converted analog base-band signal is sampled using ADCs
- Transmitter
 - Sampled signal is converted to continuous time domain using DACs
 - Analog baseband signal is up-converted to its pass-band using RF mixers

Cellular Base Stations – Key Transmitter Parameters

- Transmitter needs to comply with spectral emission mask.
 - Steep drop in emissions required in adjacent bands.
 - ACLR (Adjacent channel Leakage ratio) is a key parameter.
 - \Rightarrow In FDD system, TX emissions in to the UL band would limit base station performance.
- TX EVM (Error Vector Magnitude)
 - Measure of deviation in the transmitted signal from the ideal "symbol constellation".
 - EVM = $||x(n) s(n)||^2 / ||s(n)||^2$
 - TX EVM reduces the noise margin available at the receiver \Rightarrow Limits the largest symbol constellation that can be used.

Would there be any additional care-about on TX emissions for FDD?

Transmit Power Amplifier Non-linearity

- Transmit PA (power amplifier) is highly non-linear.
 - \Rightarrow Creates harmonic distortion (HD) and inter-modulation (IMD) spectral components.
 - \Rightarrow Would degrade ACLR, resulting in violation of TX emission mask specification.
 - Signal power can be backed-off to operate in the linear region \Rightarrow Loss in power efficiency.
- The PA non-linearity can be compensated by pre-distorting the transmit signal.

What happens to the output spectrum, if PA non-linearity is of the form : $f(x) = x - \propto x^3$?

Transmit Power Amplifier – Digital Pre Distortion (DPD)

- Non-linearity can be estimated, if the signal at the PA output is observable, by comparing it against the desired transmit signal.
 - Once the non-linearity is estimated, it can be precompensated in digital ⇒ Referred to as DPD
 - Fairly complex problem, as PA's are highly non-linear and experience memory artifacts.
- A Feedback (FB) Receiver (also known as auxiliary receiver) chain can be used to observe the "non-linear" PA output signal.
 - Need to observe a wider BW than that of the inherent signal (anywhere from 3X to 5X) ⇒ FB cannot be same as RX

PA Output Spectrum without DPD and, with DPD enabled

Courtesy: Goutham Ramesh & Jawaharlal Tangudu

What bandwidth should the Feedback receiver have to support, assuming signal has a BW of X?

Cellular Base Station – Signal Chain Architecture (2)

Feedback (FB) or Auxiliary Receiver chain is used to monitor the "on-air" transmit signal, estimate its characteristics and compensate for non-idealities in the TX.

- How many FB receivers are needed in an integrated transceiver with 4 transmit channels?
 - Less than 4, as FB receiver can be time-multiplexed across TX channels.

Cellular Base Stations – Key Receiver Parameters

- Receiver Sensitivity
 - Indicates the lowest power signal that can be successfully demodulated and decoded at the receiver.
 - \Rightarrow Determines the UL cell coverage.
- Blocker tolerance
 - Indicates the highest level of out-of-band interferer that can be tolerated at the receiver.
 - \Rightarrow Determines the attenuation spec for the external filters \Rightarrow Direct impact on cost.
 - \Rightarrow In FDD system, TX signal is always present and would be the strongest blocker.

Would there be any additional care-about on blockers for FDD?

What performance aspect would non-linearity in RX chain impact?

Integrated Transceiver Non-Idealities (1)

- Phase Noise
 - Ideal down-conversion involves mixing with a sinusoid.
 - In practice, this operation is far from ideal.
 - $y(t) = r(t) * exp\{j2\pi f_c t + j\theta(t)\}$
 - \Rightarrow Impacts TX EVM, TX Emission mask & RX blocker tolerance.
- Sampling Jitter
 - Sampling instances of the data converters (DAC & ADC) would be non-uniform.
 - $r(n) = r(t)|_{t=nT+\tau(n)} = r_{unif}(n) + \tau(n) * r'(t)|_{t=nT}$
 - \Rightarrow Impacts TX EVM, TX Emission mask & RX blocker tolerance.
- What system parameters would phase noise impact?
- What attribute of the input signal, does the relative magnitude of sampling jitter depend on?

Integrated Transceiver Non-Idealities (2)

- TX LO Leakage
 - The carrier used in the RF mixer can leak-through to the Transmit output.
 - \Rightarrow Impacts TX emission mask & TX EVM.
- Flicker Noise
 - Low frequency noise with a PSD inversely proportional to frequency (1/f)
- ADC Quantization Noise
 - Additional contributor to RX noise floor.
 - ADC SQNR = $6.02 * Nbits + 10 * \log_{10}(3)$
 - \Rightarrow ADC over-sampling factor improves the PSD of the quantization noise floor
 - Quantization noise can be shaped, if the desired BW is much smaller than the Nyquist BW \Rightarrow Fewer ADC bits are sufficient.
 - Digital decimation filters are used to suppress shaped out-of-band noise
- What happens if ADC has an over-sampling factor?

IF Sampling (Heterodyne) Architecture

Wireless Base Stations – IF Sampling Architecture

- Desired Signal is down-converted to an intermediate frequency (IF) using RF mixers
- IF signal is sampled using wider bandwidth IF data converters

IF Sampling Architecture – Advantages & Limitations

- Requires only an in-phase (I) signal chain
 ⇒ Potential cost savings
- TX LO leakage is far away from signal band and can be filtered out
 - \Rightarrow Easy to comply with emission mask
- Flicker noise has less impact on TX/RX performance
 - \Rightarrow Relaxes analog baseband design

- Image band will alias, if it is not filtered out
 ⇒ Increases complexity of the external filter
- Analog base-band has to process wider BW than that of the signal (BW + 2f_{IF})
 - \Rightarrow Increases cost & power consumption
- Dual band support need chain duplication
 ⇒ Doubling of cost & power consumption
- What are possible RX mixer frequencies for Band 1 (UL: 1920 1980 MHz & DL: 2110 2170 MHz), if the desired intermediate frequency (f_{IF}) is 100 MHz?
 - Is one of them desirable over the other?

Lately, base station vendors have been moving away from "legacy" IF sampling architecture

Zero-IF Architecture

Zero-IF Architecture

 The RF signal is down-converted to Zero-IF using Quadrature (sin/cos) RF mixers, followed by base-band ADC I/Q sampling

Zero-IF – Advantages over Heterodyne Architecture

- No image-band filtering needed
 - Relaxes RF filter requirements, hence cost.
- Architecturally, in ZIF, NO input filtering is required ... but is that practical?
 - Without filtering, there could be front-end saturation due to strong blockers

Zero-IF – Advantages over Heterodyne Architecture

- Analog base-band needs to process only the signal band
 - \Rightarrow Cost savings & Power reduction
- I/Q processing actually requires two chains
 - Yet, overall cost/power is lower because of significantly lower bandwidth to be supported
- Also easier to integrate DSA within the device

Zero-IF – Advantages over Heterodyne Architecture

- ADC need not support wide bandwidth
 - \Rightarrow Enables use of an oversampled $\Sigma\Delta$ ADC architecture
 - \Rightarrow Reduces ADC power consumption, relaxes anti-alias filtering requirement

Zero-IF and (complex) Low IF

- In practice, a ZIF receiver designed for a certain bandwidth might actually get deployed as a complex Low IF receiver for a signal of slightly lower bandwidth
 - Provides immunity from low-frequency flicker noise and LO-leakage based DC offset

- Although we focused on the RX, analogous arguments work for the TX
 - Zero IF / (complex) Low IF is an efficient choice for single-band systems

Zero IF / (complex) Low IF Challenges – RX IQ Mismatch

- Gain/phase mismatch between the I & Q chains is referred to as IQ Mismatch (IQMM)
 - I/Q signals are not separated by 90 degrees & experience different gains.

Zero IF / (complex) Low IF Challenges – RX IQ Mismatch

• The time-domain interpretation of IQMM is a matrix transformation of I and Q signals

$$\begin{bmatrix} z_I \\ z_Q \end{bmatrix} = M \begin{bmatrix} y_I \\ y_Q \end{bmatrix} = \begin{bmatrix} \alpha & 0 \\ \sin \theta & \cos \theta \end{bmatrix} \begin{bmatrix} y_I \\ y_Q \end{bmatrix}$$

• Assuming received I and Q signals are uncorrelated and of equal power, estimation can be done using self and cross correlations. Correction is with *M*⁻¹

$$\hat{\alpha} = \sqrt{\frac{R_{II}}{R_{QQ}}} = \sqrt{\frac{E(|z_I(n)|^2)}{E(|z_Q(n)|^2)}} \qquad \qquad \hat{\theta} = \arcsin\left(\frac{R_{IQ}}{\hat{\alpha}R_{QQ}}\right) = \sqrt{\frac{E(z_I(n)z_Q(n))}{E(|z_Q(n)|^2)}}$$

- Such approaches yield an IMRR (image rejection ratio) of ~40 dB; useful (e.g.) in WLAN RX
- 70 dB performance required in base station transceivers. A key challenge is to estimate and correct a frequency dependent gain/phase mismatch between the I & Q chains

Zero IF / (complex) Low IF Challenges – RX IQ Mismatch

- Core structure for IQMM estimation / correction is shown below, uses an adaptive filter
- Need to track time / temperature variations
 - Has to be a blind algorithm running in the background

Zero IF / (complex) Low IF Challenges – TX IQ Mismatch

- Frequency selective gain/phase mismatch between the I & Q chains in TX as well
 - ⇒ Transceiver algorithms need to work alongside Modem Algorithms (e.g., Tx Digital Pre Distortion)

- Need signal processing algorithms to estimate/compensate for the I/Q imbalance
 - Need to estimate gain and phase to an accuracy of 0.1% & 0.05 degree, respectively
 - TX IQ mismatch is estimated by looping back TX RF signal through the FB receiver
 - Unknown loop-back channel and FB receivers own IQMM have to be accounted for!
 - TX LO leakage should be corrected to be better than -80dB lower than full scale DAC signal
 - Should be robust across all real-life dynamic operating scenarios

RF Sampling Architecture

RF Sampling Architecture

- The RF signal is directly sampled using Giga-sample ADC/DACs
- The frequency up-conversion & frequency down-conversion is implemented in digital using Digital Up Converter (DUC) & Digital Down Converter (DDC).

RF Sampling Architecture – Multi Band Support

- Single RF/Analog supports Dual band by duplicating the DUC/DDC
- Wideband RF/Analog supports signals in multiple Nyquist frequency range (1st, 2nd, 3rd etc.)
 - Signal in even Nyquist will be spectrally flipped.

RF Sampling Architecture – Advantages & Challenges

- Eliminates the need for RF Mixers/PLL ⇒ Cost savings in RF
- Eliminates IQ mismatch & TX LO leakage
 - \Rightarrow Easy to comply with emission mask
 - ⇒ Avoids signal processing calibration algorithms
- Wider signal BW enabled by multi-GSPS DAC/ADCs

 \Rightarrow Easy to support 800 MHz BW

- Dual band support with single RF/analog transceiver chain. Only DUC/DDC needs to be duplicated
 - \Rightarrow Relaxes analog baseband design

- DSA and data-converters need to process the entire RF bandwidth
 - ⇒ How can these be designed to minimize increase in cost & power consumption?
- Digital front-end needs to process multi-GSPS rate signals
 - ⇒ How can this be achieved with controlled increase in digital complexity

TI pioneered RF Sampling architectures for latest generation of wireless base stations

TDD and Phase Coherence

- Wireless base station transceivers need to support phase coherence in the LOs
 - \Rightarrow Across TDD epochs (for coherent signal processing)
 - \Rightarrow Across frequency switching epochs (if applicable, for calibrations)
- Phase-coherence: If an LO / NCO switches from f1 to f2 and then back to f1, the LO waveform phase after switch-back to f1 should be identical to what it would have been without a switch.

Phase coherence is easy to ensure in digital mixers using NCOs (How?)

 \Rightarrow Possible not just for TDD coherence, but also across actual frequency switches (How?)

What about ZIF?

RF Sampling Architecture – Challenges

- High speed digital signal processing at multi-GSPS rates is needed
- Typically requires parallelized implementation. Multiple trade-offs exist.
- If we need to run some logic at 3 GSPS, we could consider many synthesis frequency and parallelization options:
 - \Rightarrow ||5 @ 600 MHz
 - \Rightarrow ||4 @ 750 MHz
 - ⇒ ||3 @ 1000 MHz
- What are the trade-offs and what is the sweet spot?

 In a given technology node, the area of a typical digital block/module shows the following trend with synth frequency.

RF Sampling Architecture – Challenges

Synthesis Frequency (MHz)	Area per instance (norm. units)	Parallelization	Net Area (norm. units)	Power (norm. units)
600	1	5	5	3
750	1.05	4	4.2	3.15
1000	1.4	3	4.2	4.2

- The "knee" of the area vs. frequency curve usually turns out have the best balance between area and power
- Even with a given parallelization, many architecture and/or micro-architecture options are possible to "push out the knee".
- Lots of scope for research and innovations in this area.

AFE7444 (4T4R) – RF Sampling Integrated 4G/5G Transceiver

AFE74xx is industry's first RF Sampling Transceiver targeted for wireless base-stations

• RF Sampling architecture with 4 TX & 4 RX Channels

- RF sampling with 3 GSPS 14-bit ADC & 9 GSPS 14-bit DAC
- Supports >4 GHz RF frequency range
- Very wide Signal Bandwidth Support of >1 GHz
- Integrated wide-band RF digital step attenuator (DSA)
- Dual-band Digital Up-Converters (DUC) & Down-Converters (DDC)
- Internal AGC to optimally control integrated DSA
- In-built PA Protection feature for the Transmit Channels

- Re-use of receiver chain between RX & Feedback
 channels through phase-coherent dynamic switching
 - Optimizes system cost by ~15% for TDD base stations
- Fast phase-coherent digital frequency hopping
- Industry's highest performance with the lowest power consumption (~50% lower for dual band)
 - RX SNR of >60 dBFS over 1.5 GHz bandwidth
 - TX output power of >4 dBm

AFE7444 RF Sampling Transceiver – Product Summary

This product has been commercially deployed by all tier-1 wireless base station vendors in multiple 4G dual-band macro, massive MIMO 5G and mm-wave 5G base stations, around the world

ZTE Huawei	AFE74xx RF Sampling Transceiver	Product Comparison	TI AFE76xx / AFE74xx	Legacy Products
		Architecture	RF Sampling	Zero-IF
		No. of Channels	4T4R	2T2R1F
		No. of Bands	Dual	Single
		Supported TX/FB Bandwidth	~1 GHz	~400 MHz
		Supported RX Bandwidth	~1 GHz	~200 MHz
http://www.ti.com/pr	oduct/AFF7444	Dynamic RX/FB Switching	Yes	No

With AFE74xx, TI has driven customer adoption of the RF sampling technology for Wireless Base Stations ⇒ Enables wide-band support, smaller form factor, enhanced performance and low power consumption